Combinatorics of Cremona monomial maps

نویسندگان

  • Aron Simis
  • Rafael H. Villarreal
چکیده

One studies Cremona monomial maps by combinatorial means. Among the results is a simple integer matrix theoretic proof that the inverse of a Cremona monomial map is also defined by monomials of fixed degree, and moreover, the set of monomials defining the inverse can be obtained explicitly in terms of the initial data. A neat consequence is drawn for the plane Cremona monomial group, in particular the known result saying that a plane Cremona (monomial) map and its inverse have the same degree. Included is a discussion about the computational side and/or implementation of the combinatorial invariants stemming from these questions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of the Monomial Cremona Transformations of the Plane

We classify all monomial planar Cremona maps by multidegree using recent methods developed by Aluffi. Following the main result, we prove several more properties of the set of these maps, and also extend the results to the more general ‘r.c. monomial’ maps.

متن کامل

Linear syzygies and birational combinatorics

Let F be a finite set of monomials of the same degree d ≥ 2 in a polynomial ring R = k[x1, . . . , xn] over an arbitrary field k. We give some necessary and/or sufficient conditions for the birationality of the ring extension k[F ] ⊂ R, where R is the dth Veronese subring of R. One of our results extends to arbitrary characteristic, in the case of rational monomial maps, a previous syzygy-theor...

متن کامل

Monomial Ideals

Monomial ideals form an important link between commutative algebra and combinatorics. In this chapter, we demonstrate how to implement algorithms in Macaulay 2 for studying and using monomial ideals. We illustrate these methods with examples from combinatorics, integer programming, and algebraic geometry.

متن کامل

Designs over the binary field from the complete monomial group

All known direct constructions of designs over finite fields arise by subgroups of the normalizer of a Singer cycle, by lifted special linear groups, or lifted general linear groups. Other types of non-trivial automorphism groups for which designs over finite fields do exist have not been mentioned so far. In this paper we construct the first non-trivial designs over finite fields admitting the...

متن کامل

Gröbner Basis Techniques in Algebraic Combinatorics

Gröbner basis techniques in the algebraic study of triangulations of convex polytopes as well as of the number of faces of simplicial complexes will be discussed. Of these two traditional topics in combinatorics, the first will be studied by using initial ideals of toric ideals and the second will be studied by using generic initial ideals of monomial ideals.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2012